Since at least the start of the 20th century, the average global sea level has been rising. Between 1900 and 2016, the sea level rose by 16–21 cm (6.3–8.3 in).[2] More precise data gathered from satellite radar measurements reveal an accelerating rise of 7.5 cm (3.0 in) from 1993 to 2017,[3]:1554 which is a trend of roughly 30 cm (12 in) per century. This acceleration is due mostly to human-caused global warming, which is driving thermal expansion of seawater and the melting of land-based ice sheets and glaciers.[4] Between 1993 and 2018, thermal expansion of the oceans contributed 42% to sea level rise; the melting of temperate glaciers, 21%; Greenland, 15%; and Antarctica, 8%. Climate scientists expect the rate to further accelerate during the 21st century.[5]:62

Projecting future sea level is challenging, due to the complexity of many aspects of the climate system. As climate research leads to improved computer models, projections have consistently increased. For example, in 2007 the Intergovernmental Panel on Climate Change (IPCC) projected a high end estimate of 60 cm (2 ft) through 2099,[6] but their 2014 report raised the high-end estimate to about 90 cm (3 ft).[7] A number of later studies have concluded that a global sea level rise of 200 to 270 cm (6.6 to 8.9 ft) this century is "physically plausible".[3][8] A conservative estimate of the long-term projections is that each Celsius degree of temperature rise triggers a sea level rise of approximately 2.3 metres (4.2 ft/degree Fahrenheit) over a period of two millennia: an example of climate inertia.[2]

The sea level will not rise uniformly everywhere on Earth, and it will even drop in some locations.[9] Local factors include tectonic effects and subsidence of the land, tides, currents and storms. Sea level rises can influence human populations considerably in coastal and island regions.[10] Widespread coastal flooding is expected with several degrees of warming sustained for millennia.[11] Further effects are higher storm-surges and more dangerous tsunamis, displacement of populations, loss and degradation of agricultural land and damage in cities.[12][13][14] Natural environments like marine ecosystems are also affected, with fish, birds and plants losing parts of their habitat.[15]

Societies can respond to sea level rise in three different ways: to retreat, to accommodate and to protect. Sometimes these adaptation strategies go hand in hand, but at other times choices have to be made among different strategies.[16] Ecosystems that adapt to rising sea levels by moving inland might not always be able to do so, due to natural or man-made barriers.[17]

sea-level-rise-1

Past changes in sea level

sea-level-rise-2

Understanding past sea level is important for the analysis of current and future changes. In the recent geological past, changes in land ice and thermal expansion from increased temperatures are the dominant reasons of sea level rise. The last time the Earth was 2 °C (3.6 °F) warmer than pre-industrial temperatures, sea levels were at least 5 metres (16 ft) higher than now: this was when warming because of changes in the amount of sunlight due to slow changes in the Earth's orbit caused the last interglacial. The warming was sustained over a period of thousands of years and the magnitude of the rise in sea level implies a large contribution from the Antarctic and Greenland ice sheets.[18]:1139

Since the last glacial maximum about 20,000 years ago, the sea level has risen by more than 125 metres (410 ft), with rates varying from less than a mm/year to 40+ mm/year, as a result of melting ice sheets over Canada and Eurasia. Rapid disintegration of ice sheets led to so called 'meltwater pulses', periods during which sea level rose rapidly. The rate of rise started to slow down about 8,200 years before present; the sea level was almost constant in the last 2,500 years, before the recent rising trend that started at the end of the 19th century or in the beginning of the 20th.[19]

Sea level measurement

Sea level changes can be driven either by variations in the amount of water in the oceans, the volume of the ocean or by changes of the land compared to the sea surface. The different techniques used to measure changes in sea level do not measure exactly the same. Tide gauges can only measure relative sea level, whilst satellites can also measure absolute sea level changes.[20] To get precise measurements for sea level, researchers studying the ice and the oceans on our planet factor in ongoing deformations of the solid Earth, in particular due to landmasses still rising from past ice masses retreating, and also the Earth's gravity and rotation.[3]

  • Satellites

sea-level-rise-3

Since the 1992 launch of TOPEX/Poseidonaltimetric satellites have been recording the change in sea level.[21] Those satellites can measure the hills and valleys in the sea caused by currents and detect trends in their height. To measure the distance to the sea surface, the satellite sends a microwave pulse to the ocean's surface and records the time it takes to return. A microwave radiometer corrects any delay that may be caused by water vapor in the atmosphere. Combining this data with the precise location of the spacecraft makes it possible to determine sea-surface height to within a few centimeters (about one inch).[22] Current rates of sea level rise from satellite altimetry have been estimated to be 3.0 ± 0.4 millimetres (0.118 ± 0.016 in) per year for the period 1993–2017.[23] Earlier satellite measurements were previously at odds with tide gauge measurements. A small calibration error for the Topex/Poseidon satellite discovered in 2015 was identified as the cause of this mismatch. It had caused a slight overestimation of the 1992–2005 sea levels, which masked the ongoing sea level rise acceleration.[24]

sea-level-rise-4

Satellites are useful for measuring regional variations in sea level, such as the substantial rise between 1993 and 2012 in the western tropical Pacific. This sharp rise has been linked to increasing trade winds, which occur when the Pacific Decadal Oscillation (PDO) and the El Niño–Southern Oscillation (ENSO) change from one state to the other.[25] The PDO is a basin-wide climate pattern consisting of two phases, each commonly lasting 10 to 30 years, while the ENSO has a shorter period of 2 to 7 years.[26]

  • Tide gauges

Another important source of sea-level observations is the global network of tide gauges. In contrast to the satellite record, this record has a lot of spatial and temporal gaps.[27] Coverage of tide gauges started primarily in the Northern Hemisphere, with data for the Southern Hemisphere remaining scarce up to the 1970s.[27] The longest running sea-level measurements, NAP or Amsterdam Ordnance Datum established in 1675, are recorded in Amsterdamthe Netherlands.[28] In Australia record collection is also quite extensive, including measurements by an amateur meteorologist beginning in 1837 and measurements taken from a sea-level benchmark struck on a small cliff on the Isle of the Dead near the Port Arthur convict settlement in 1841.[29]

This network was used, in combination with satellite altimeter data, to establish that global mean sea-level rose 19.5 cm (7.7 in) between 1870 and 2004 at an average rate of about 1.44 mm/yr (1.7 mm/yr during the 20th century).[30] This is an important confirmation of climate change simulations which predicted that sea level rise would accelerate in response to global warming. In Australia, data collected by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) show the current global mean sea level trend to be 3.2 mm (0.13 in) per year, a doubling of the rate during the 20th century.[31][32]

Some regional differences are also visible in the tide gauge data. Some of the recorded regional differences are due to differences in the actual sea level, while other are due to vertical land movements. In Europe for instance, considerable variation is found because some land areas are rising while others are sinking. Since 1970, most tidal stations have measured higher seas, but sea levels have dropped along the northern Baltic Sea due to post-glacial rebound.[33]

Egypt
Morocco
Tunis
Mauritania